Abstract

Finite mixture of regression (FMR) models can be reformulated as incomplete data problems and they can be estimated via the expectation–maximization (EM) algorithm. The main drawback is the strong parametric assumption such as FMR models with normal distributed residuals. The estimation might be biased if the model is misspecified. To relax the parametric assumption about the component error densities, a new method is proposed to estimate the mixture regression parameters by only assuming that the components have log-concave error densities but the specific parametric family is unknown.Two EM-type algorithms for the mixtures of regression models with log-concave error densities are proposed. Numerical studies are made to compare the performance of our algorithms with the normal mixture EM algorithms. When the component error densities are not normal, the new methods have much smaller MSEs when compared with the standard normal mixture EM algorithms. When the underlying component error densities are normal, the new methods have comparable performance to the normal EM algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.