Abstract

X-ray properties of galaxy groups can unlock some of the most challenging research topics in modern extragalactic astronomy: the growth of structure and its influence on galaxy formation. Only with the advent of the Chandra and XMM facilities have X-ray observations reached the depths required to address these questions in a satisfactory manner. Here we present an X-ray imaging study of two patches from the CNOC2 spectroscopic galaxy survey using combined Chandra and XMM data. A state of the art extended source finding algorithm has been applied, and the resultant source catalog, including redshifts from a spectroscopic follow-up program, is presented. The total number of spectroscopically identified groups is 25 spanning a redshift range 0.04-0.79. Approximately 50% of CNOC2 spectroscopically selected groups in the deeper X-ray (RA14h) field are likely X-ray detections, compared to 20% in the shallower (RA21h) field. Statistical modeling shows that this is consistent with expectations, assuming an expected evolution of the Lx-M relation. A significant detection of a stacked shear signal for both spectroscopic and X-ray groups indicates that both samples contain real groups of about the expected mass. We conclude that the current area and depth of X-ray and spectroscopic facilities provide a unique window of opportunity at z~0.4 to test the X-ray appearance of galaxy groups selected in various ways. There is at present no evidence that the correlation between X-ray luminosity and velocity dispersion evolves significantly with redshift, which implies that catalogs based on either method can be fairly compared and modeled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call