Abstract
For me the search for hematopoietic stem cells (HSC) actually started with the discovery by Till, McCulloch, and colleagues (1-3) that bone marrow contained single cells that could give rise to myeloerythroid colonies in the spleen, and sometimes these colonies contained cells that made more spleen colonies as well as radioprotected and reconstituted lethally irradiated mice (3). But in retrospect, it should have started with the remarkable observation of Ray Owen in 1945 that bovine fraternal twins sharing a single placenta and blood circulation retained production of blood cells genetically defined to be from both throughout their life (4). It could be argued that this was the experiment that began both modern experimental hematology as well as modern cellular immunology. The Till, McCulloch, Wu, Becker, and Simonovitch experiments were elegant demonstrations that single, genetically marked cells existed (random DNA breaks and translocations induced by sublethal irradiation of the donor bone marrow) that could both self-renew and differentiate (2, 5). But these experiments did not put the pure cells in the hands of scientists, and so most of their functions for the next 25 years were implied rather than directly analyzed. Just as genetics is the complement to biochemistry (when one considers genes and gene products), cell marking is the complement to cell purification in the fields of developmental and cellular biology. The first attempts at such cellular purification came from the 'school' of Till & McCulloch (6, 7), and independently the school of Van Bekkum in the Netherlands (8). But what was lacking in those experiments and at that time were both a comprehensive approach that would take into account the clonal activity of stem cells in both self-renewal and differentiation to all blood cell outcomes, and the tools with which one could separate what turned out to be an extremely rare population in the bone marrow. And, it wasn't known until much later that most day 8-10 spleen colonies were the progeny of progenitors, not stem cells (9). Two inventions facilitated the technology of purification of HSC: the advent of monoclonal antibody technology by Kohler & Milstein (10), and the development of the multiparameter fluorescence activated cell sorter by the Herzenberg group (11). My laboratory had established assays for the clonal precursors of T cells and B cells, and we had been using the Till-McCulloch spleen colony clonal assays since the mid-1960s. In the late 1970s and early 1980s we began in earnest the search for mouse early hematopoietic progenitors, including HSCs (12-16). The purification of HSCs proved to be much like the purification of an enzyme, or a cell surface receptor, or a gene. Successive enrichments finally led to the isolation of a population, which could no longer be subdivided and which contained precursors that read out in all clonal assays as well as in radioprotection of lethally irradiated hosts (17). Our first experiments transplanting single HSC in 1991 and 1992, led to the definitive demonstration that these were indeed HSCs (18-20). But these experiments and the ideas that led to them were developed in the context of immunology and experimental hematology as they were emerging in the 1950s and 60 s. This volume of Immunological Reviews is a rich testimony to the kinds of ideas and experiments that, at least in retrospect, turned out to be critical. Many roads were taken, but only one ended up at stem cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.