Abstract

I have tried to interpret the phylogenetic distribution of the RNase P with the aim of helping to clarify the stage reached by the evolution of cellularity in the Last Universal Common Ancestor (LUCA); that is to say, if the evolutionary stage of the LUCA was represented by a protocell (progenote) or by a complete cell (genote). Since there are several arguments that lead one to believe that only the RNA moiety of the RNase P was present in the LUCA, this might imply that this evolutionary stage was actually the RNA world. If true this would imply that the LUCA was a progenote because the RNA world being a world subject to multiple evolutionary transitions that would involve a high noise at many its levels, which would fall within the definition of the progenote. Furthermore, since RNA-mediated catalysis is much less efficient than protein-mediated catalysis, then the only RNA moiety that was present in the LUCA could imply - by per se, without invoking the existence of the RNA world - that the LUCA was a progenote because an inefficient catalysis might have characterized this evolutionary stage. This evolutionary stage would still fall under the definition of the progenote. In addition, the observation that the protein moieties of the RNase P of bacteria and archaea are not-homologs would imply that these originated independently in the two main phyletic lineages. In turn, this would imply the progenotic nature of the ancestors of both archaea and bacteria. Indeed, it is admissible that such a late origin - in the main phyletic lineages - of the protein moieties of the RNase P is witness to an evolutionary transition towards a more efficient catalysis, evidently made clear precisely by the evolution of the protein moieties of the RNase P which would have helped the RNA of the RNase P to a more efficient catalysis. Hence, this would date that evolutionary moment as a transition to a much more efficient catalysis and consequently would imply which in that evolutionary stage there was the actual transition from the progenotic to genotic status. Finally, this late origin of the RNase P protein moieties in the bacterial and archaeal domains per se could imply the presence of a progenotic stage for their ancestors, or at least that a cell stage would have been much less likely. In fact, it is true that genes can originate both in a cellular and in a progenotic stage, but they mainly typify the latter because they are, by definition, in formation. Then it is expected that in the evolutionary stage of the formation of the main phyletic lineages - that is to say, in an evolutionary time in which the formation of genes might be expected - that the origin of proteins is to be related to a rapid and progressive evolution typical of the progenote precisely because in such an evolutionary stage the origin of genes is more easily and simply explained as reflecting a progenotic rather than a genotic stage. Indeed, if instead the evolutionary stage of the ancestors of bacteria and archaea had been the cellular one, then observing the origin of the protein moieties of the RNase P would have been, to some extent, anomalous because this completion should have already occurred, simply because the transformation of a ribozyme into an enzyme should have already taken place precisely because it falls within the very definition of the cellular status. The conclusion is that both the LUCA and the ancestor of archaea and that of bacteria may have been progenotes. If these arguments were true then either the tree of life as commonly understood would not exist and therefore the main phyletic lineages would have originated directly from the LUCA, or there would have been at least two different populations of progenotes that would have finally defined the domain of bacteria and that of archaea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call