Abstract

The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important invasive agricultural insect pest with a wide host range, and has spread around the world over the last century. This evolutionary trait may have arisen primarily from interactions between B. dorsalis and other invertebrates that share the same ecological niches. The invasive behavior of B. dorsalis also frequently exposes them to diverse species of viruses. Thereby, RNA viromes may be useful microbial markers to understand the ecological evolution of B. dorsalis as well as to investigate virus-host interactions. Here, we reported eight novel RNA viruses in B. dorsalis of a lab colony, including four positive-strand RNA viruses, two negative-strand RNA viruses, and two double-stranded RNA viruses using high-throughput sequencing technology. Analysis of the virus-derived small RNAs suggested that most of these viruses may be active and trigger the host antiviral RNAi responses. The viruses were also detected in various geographical populations of B. dorsalis, implying that there is a strong association between the viromes and host. In addition, these viruses infected specific fly tissues, predominately the central nervous system and gut. Furthermore, we explored the dynamics of the viruses when hosts were exposed to short- or long-term stressors, which showed that titers of some viruses were responsively altered in the stressed B. dorsalis. The discovery of these viruses may enrich our understanding of the species diversity of RNA viruses and also provide information on viruses in association with host adaptation in insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call