Abstract

mRNA splicing and export plays a key role in the regulation of gene expression, with recent evidence suggesting an additional layer of regulation of gene expression and cellular function through the selective splicing and export of genes within specific pathways. Here we describe a role for the RNA processing factors THRAP3 and BCLAF1 in the regulation of the cellular DNA damage response (DDR) pathway, a key pathway involved in the maintenance of genomic stability and the prevention of oncogenic transformation. We show that loss of THRAP3 and/or BCLAF1 leads to sensitivity to DNA damaging agents, defective DNA repair and genomic instability. Additionally, we demonstrate that this phenotype can be at least partially explained by the role of THRAP3 and BCLAF1 in the selective mRNA splicing and export of transcripts encoding key DDR proteins, including the ATM kinase. Moreover, we show that cancer associated mutations within THRAP3 result in deregulated processing of THRAP3/BCLAF1-regulated transcripts and consequently defective DNA repair. Taken together, these results suggest that THRAP3 and BCLAF1 mutant tumors may be promising targets for DNA damaging chemotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.