Abstract

To achieve accurate spatiotemporal patterns of gene expression, RNA-binding proteins (RBPs) guide nuclear processing, intracellular trafficking, and local translation of target mRNAs. In neurons, RBPs direct transport of target mRNAs to sites of translation in remote axons and dendrites. However, it is not known whether an individual RBP coordinately regulates multiple mRNAs within these morphologically complex cells. Here we identify SFPQ (Splicing factor, proline-glutamine rich) as an RBP that binds and regulates multiple mRNAs in dorsal root ganglion (DRG) sensory neurons and thereby promotes neurotrophin-dependent axonal viability. SFPQ acts within nuclei, cytoplasm and axons to regulate multiple functionally related mRNAs essential for axon survival. Notably SFPQ is required for co-assembly of laminb2 and bclw within RNA granules and for axonal trafficking of these mRNAs. Together these data demonstrate that SFPQ orchestrates spatial gene expression of a newly identified RNA regulon essential for axonal viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call