Abstract

ABSTRACTQuaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNβ transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNβ activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNβ induction. Consistently, ectopic expression of RIG-I activates stronger IFNβ induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.