Abstract

While most asthma can be treated with steroids, about 10%, called severe asthma, is refractory to steroids. It has recently been shown that in a subgroup of severe asthma cases, neutrophils that infiltrate into the airways play an important role in inflammation. However, the mechanisms underlying this increased neutrophil infiltration are not well understood. Here, using a mouse model of steroid-resistant neutrophilic inflammation, we show that mice deficient for the RNA-binding protein Mex-3B have significantly less neutrophil infiltration in the airways than wild-type mice. We further demonstrate that Mex-3B post-transcriptionally upregulates CXCL2, a chemokine that induces neutrophil chemotaxis and migration. Moreover, we show that treatment with either anti-CXCL2 antibody or anti-Mex-3B antisense oligonucleotide suppresses neutrophilic allergic airway inflammation. These results suggest that Mex-3B-mediated induction of CXCL2 is crucial for steroid-resistant neutrophilic allergic airway inflammation. Our findings suggest new strategies for therapeutic intervention in steroid-resistant severe asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.