Abstract

Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5’ UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.

Highlights

  • Interaction of RNA-binding proteins (RBPs) with target mRNA is necessary for every aspect of its control, including its processing, export, localization, stability, and translation into protein [1]

  • Lens fiber cells degrade their nuclei to achieve lens transparency, which poses a fundamental question: how is differentiation regulated in a cell progressing toward compromised transcriptional potential? We demonstrate that this is achieved by distinct post-transcriptional gene expression control mechanisms mediated by a conserved RNA-binding protein Celf1

  • Celf1 regulates key factors required for normal nuclear degradation and cell morphology of fiber cells by controlling abundance of target mRNAs and/or their translation into protein

Read more

Summary

Introduction

Interaction of RNA-binding proteins (RBPs) with target mRNA is necessary for every aspect of its control, including its processing, export, localization, stability, and translation into protein [1] These events are collectively defined as post-transcriptional control of gene expression and are essential to determine the proteome of a cell. While the role of transcription factors in vertebrate organogenesis is established–for example, a detailed transcriptional regulatory network governing lens development is derived [2]–that of RBPs, functioning in post-transcriptional gene expression control, is not well defined [3] This represents a significant knowledge gap, especially considering that vertebrate genomes encode similar numbers of transcription factors and RBPs [4].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.