Abstract

Previous work has demonstrated the value of dynamic programming models for the analysis of parental decision making. In the present paper we extend this approach to analyse conflicts between parents and their offspring, and develop a dynamic ESS model of feeding and fledging of nestling birds. In order to simplify the formulation and solution of the dynamic ESS model, we adopt an assumption of alternating decisions: in each time period the parent first decides whether to continue provisioning the nestling, after which the nestling decides whether to leave the nest. The model takes into account numerous tradeoffs involved in parent-offspring decisions, including differential growth and mortality rates for offspring in and out of the nest, risk of fledging, relation between long-term survival and post-breeding mass of offspring, and parental mortality risk associated with provisioning of offspring. Depending on assumed parameter values, the model is capable of predicting a wide range of feeding-fledging behaviour. The model is applied specifically to the juvenile life history of dovekies (Alle alle), and provides a behavioural explanation for the phenomenon of pre-fledging mass recession in this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.