Abstract
Given a sample of instances with binary labels, the bipartite top ranking problem is to produce a ranked list of instances whose head is dominated by positives. One popular existing approach to this problem is based on constructing surrogates to a performance measure known as the fraction of positives of the top (PTop). In this paper, we theoretically show that the measure and its surrogates have an undesirable property: for certain noisy distributions, it is optimal to trivially predict the same score for all instances. We propose a simple rectification which avoids such trivial solutions, while still focussing on the head of the ranked list and being as easy to optimise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.