Abstract
All great ape species are endangered, and infectious diseases are thought to pose a particular threat to their survival. As great ape species vary substantially in social organisation and gregariousness, there are likely to be differences in susceptibility to disease types and spread. Understanding the relation between social variables and disease is therefore crucial for implementing effective conservation measures. Here, we simulate the transmission of a range of diseases in a population of orang-utans in Sabangau Forest (Central Kalimantan) and a community of chimpanzees in Budongo Forest (Uganda), by systematically varying transmission likelihood and probability of subsequent recovery. Both species have fission-fusion social systems, but differ considerably in their level of gregariousness. We used long-term behavioural data to create networks of association patterns on which the spread of different diseases was simulated. We found that chimpanzees were generally far more susceptible to the spread of diseases than orang-utans. When simulating different diseases that varied widely in their probability of transmission and recovery, it was found that the chimpanzee community was widely and strongly affected, while in orang-utans even highly infectious diseases had limited spread. Furthermore, when comparing the observed association network with a mean-field network (equal contact probability between group members), we found no major difference in simulated disease spread, suggesting that patterns of social bonding in orang-utans are not an important determinant of susceptibility to disease. In chimpanzees, the predicted size of the epidemic was smaller on the actual association network than on the mean-field network, indicating that patterns of social bonding have important effects on susceptibility to disease. We conclude that social networks are a potentially powerful tool to model the risk of disease transmission in great apes, and that chimpanzees are particularly threatened by infectious disease outbreaks as a result of their social structure.
Highlights
Great apes are susceptible to a wide range of diseases, including Ebola [1], polio-like diseases and mange [2], measles and scabies [3], influenza [4], tuberculosis [5] and various respiratory diseases [2,6,7,8,9]
Not all long-term chimpanzee (Pan troglodytes spp.) field sites have been affected by lethal epidemics, some have suffered great losses due to diseases
While disease transmission from humans to great apes has become an inherent problem associated with ecotourism and scientific research, natural diseases that affect great apes in the absence of humans will continue to be a threat [1,13,14]
Summary
Great apes are susceptible to a wide range of diseases, including Ebola [1], polio-like diseases and mange [2], measles and scabies [3], influenza [4], tuberculosis [5] and various respiratory diseases [2,6,7,8,9]. Not all long-term chimpanzee (Pan troglodytes spp.) field sites have been affected by lethal epidemics, some have suffered great losses due to diseases. Respiratory epidemics have affected a number of study sites [2,6,7,8,9], with indications that some infections have been transmitted from humans [8,10]. There are no documented large scale epidemics in orang-utans (Pongo spp.), there are reports of disease transmission from humans. Understanding how diseases spread within groups and populations of great apes is of vital importance to implement effective preventative measures and to minimise the risk of losing individuals, and the species, to diseases
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.