Abstract

Container-inhabiting Aedes mosquitoes are successful invaders and important arthropod-borne disease vectors worldwide. In North America, a subtropical assemblage containing introduced Aedes albopictus and Aedes aegypti and the native Aedes triseriatus have served as a model for investigating ecological interactions during invasions and focused on the outcomes at the larval stages. We report a hypothesis driven study of a more temperate container Aedes assemblage at the adult population level monitored in the state of New Jersey during a 9-year period. The invasive A. albopictus and Aedes japonicus abundances increased by a factor of two, whereas A. triseriatus abundance decreased by a factor of three. Spatiotemporal analysis indicated these trends were coincident especially in the areas invaded by A. albopictus, leading to partial displacement of A. triseriatus. Although the invasive species reached peak abundance in highly urbanized areas, the native species’ rate of decline was similar across the urbanization gradient. Higher winter temperatures and precipitation favored increased A. albopictus abundance suppressing A. triseriatus adult populations in turn, whereas A. japonicus abundance was promoted by summer precipitation. The results validate the conceptual framework developed for subtropical container Aedes and suggest that the current climatic trends will favor further spread of A. albopictus, amplifying public health concerns.

Highlights

  • Container- or tree hole-inhabiting mosquitoes from the genus Aedes have been intensively studied over several decades for a variety of reasons

  • The changes between 2003–2005 and 2006–2010 time periods were characterized by a significant increase in A. albopictus abundance, and a decline in A. japonicus and A. triseriatus

  • The invasion of a stronger larval competitor, the Asian tiger mosquito (A. albopictus) was accompanied by a steep decline in the adult populations of the native A. triseriatus. These trends of increased A. albopictus populations and diminished A. triseriatus populations coincided in time and co-localized spatially over a large geographic area across both urban and rural locales

Read more

Summary

Introduction

Container- or tree hole-inhabiting mosquitoes from the genus Aedes have been intensively studied over several decades for a variety of reasons. These mosquitoes and their preferred habitat (artificial containers or tree holes) provide a simple system for studying complex problems of species interactions, trophic processes, and community structure (Juliano 1998, 2009; Ellis et al 2006). Among container Aedes, the Asian tiger mosquito, Aedes albopictus (Skuse), has figured prominently as a research subject due to high invasion potential illustrated through global spread, competitive larval advantages over other container Aedes, and the ability to vector numerous pathogens (Lounibos 2002; Juliano and Lounibos 2005). The number of field investigations studying these interactions have been relatively small and only scant evidence of the predicted outcomes have been presented (Lounibos et al 2001; Juliano 2009)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.