Abstract

Positron emission tomography, with its high sensitivity and resolution, is growing rapidly as an imaging technology for the diagnosis of many disease states. The success of this modality is reliant on instrumentation and the development of effective and novel targeted probes. Initially, research in this area was focused on what we will define in this article as 'standard' PET isotopes (carbon-11, nitrogen-13, oxygen-15 and fluorine-18), but the short half-lives of these isotopes limit radiopharmaceutical development to those that probe rapid biological processes. To overcome these limitations, there has been a rise in nonstandard isotope probe development in recent years. This review focuses on the biological probes and processes that have been examined, in additiom to the preclinical and clinical findings with nonstandard radiometals: copper-64, zirconium-89, and yttrium-86.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call