Abstract
AbstractAmong materials produced as colloidal quantum dots (CQDs), HgTe has a special status being the only material covering the whole infrared range from the visible to the THz (0.7–100 µm). This unique property resulting from its electronic structure, combined with an air stability and a capacity for charge conduction has generated consistent and massive efforts to produce and improve HgTe CQDs over the past two decades. Meanwhile, HgTe CQDs offer an infrared platform more advanced than any other colloidal alternatives in the mid‐wave infrared regarding their integration into advanced photonic and optoelectronic applications. Here, the latest developments of HgTe CQDs relative to the material's growth, electron structure modelling, its integration into photonic structures and its transfer as the active material from single element devices toward complex sensors and infrared imagers are reviewed. Finally, a discussion about the potential of this material for industry, rising new challenges beyond economical and production considerations at low technological readiness level, relative to the material and device design, is also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.