Abstract

Air-transmitted pathogens may cause severe epidemics, posing considerable threats to public health and safety. Wearing a face mask is one of the most effective ways to prevent respiratory virus infection transmission. Especially since the new coronavirus pandemic, electroactive materials have received much attention in antiviral face masks due to their highly efficient antiviral capabilities, flexible structural design, excellent sustainability, and outstanding safety. This review first introduces the mechanism for preventing viral infection or the inactivation of viruses by electroactive materials. Then, the applications of electrostatic-, conductive-, triboelectric-, and microbattery-based materials in face masks are described in detail. Finally, the problems of various electroactive antiviral materials are summarized, and the prospects for their future development directions are discussed. In conclusion, electroactive materials have attracted great attention for antiviral face masks, and this review will provide a reference for materials scientists and engineers in antiviral materials and interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call