Abstract

Drought is one of the main threats to food security and ecosystem productivity. During the past decades, Europe has experienced a series of droughts that caused substantial socioeconomic losses and environmental impacts. A key question is whether there are some similar characteristics in these droughts, especially when compared to the droughts that occurred further in the past. Answering this question is impossible with traditional single-index approaches and also short-term and often spatially inconsistent records. Here, using a multidimensional machine learning-based clustering algorithm and the hydrologic reconstruction of European drought, we determine the dominant drought types and investigate the changes in drought typology. We report a substantial increase in shorter warm-season droughts that are concurrent with an increase in potential evapotranspiration. If shifts reported here persist, then we will need new adaptive water management policies and, in the long run, we may observe considerable alterations in vegetation regimes and ecosystem functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.