Abstract

Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasinormal mode (QNM). In classical general relativity, spacetime is continuous and there is no existence of the so-called minimal length. The introduction of the correction items of the generalized uncertainty principle (GUP), the parameter $\beta$, can change the singularity structure of the black hole gauge and may lead to discretization in time and space. We apply the sixth-order WKB method to approximate the QNM of Schwarzschild black holes with quantum corrections and perform numerical analysis to derive the results of the method. Also, we find that the effective potential and QNM in scalar fields are larger than those in electromagnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.