Abstract
The ring-infected erythrocyte surface antigen (RESA) is a 155-kDa malarial polypeptide which is released from merozoites and becomes associated with the erythrocyte membrane at the time of invasion. Inside-out vesicles (IOVs) prepared from Plasmodium falciparum-infected erythrocytes contain RESA, presumably bound to the membrane skeleton, as it is largely insoluble in Triton X-100. When these IOVs were incubated with [gamma-32P]ATP, a 155-kDa polypeptide was labeled in IOVs from infected, but not from uninfected erythrocytes. Immunoprecipitation using specific rabbit antisera confirmed that RESA is indeed a phosphoprotein. Phosphoamino acid analysis revealed phosphoserine and a small amount of phosphothreonine, but no phosphotyrosine. Labeling of intact parasitized erythrocytes with inorganic [32P]phosphate for several hours in culture resulted in RESA in Triton-insoluble extracts being phosphorylated. Labeling of synchronized parasites showed that RESA was phosphorylated only when it became associated with the erythrocyte membrane, and although RESA was abundant in mature parasites, it was not phosphorylated. RESA, released into the culture supernatants during the growth of P. falciparum, bound to IOVs prepared from normal uninfected erythrocytes, and subsequent labeling with [gamma-32P]ATP resulted in the phosphorylation of RESA. The evidence suggests that RESA is phosphorylated by an erythrocyte membrane kinase and probably not by a parasite-encoded enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.