Abstract
Mucor circinelloides responds to blue light by activating the biosynthesis of carotenoids. Gene crgA acts as a repressor of this light-regulated process, as its inactivation leads to overaccumulation of carotenoids in both the dark and the light. The predicted CrgA protein contains different recognizable structural domains, including a RING-finger zinc-binding motif, several glutamine-rich regions, a putative nuclear localization signal and an isoprenylation domain. To gain insight into the specific mode of action of the CrgA protein, we sought to define the CrgA domains critical for the light regulation of carotenogenesis. For this, mutant crgA alleles harbouring missense or deletion mutations in conserved residues of those domains were generated, and their functionality was assessed by testing their ability to complement a null crgA mutation. Point mutations of the amino-terminal RING-finger domain abrogated the ability of CrgA to repress carotenogenesis in the dark, as did the deletion of a poly glutamine-rich region at the carboxyl domain of CrgA. In contrast, mutations of the isoprenylation domain only slightly affected the CrgA function in carotenogenesis. The results identify two functional domains presumably involved in protein-protein interaction in the CrgA protein and suggest a role for the ubiquitin-proteasome pathway in the light regulation of carotenogenesis in fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.