Abstract

Drought is one of the most important limiting factors for plant growth and development. To identify genes required for drought stress response in tobacco, one highly induced mRNA encoding a RING-H2 Finger gene (RHF1) was isolated by mRNA differential display. The full-length NtRHF1 encodes a protein of 273 amino acids and contains a single C3H2C3-type RING motif in its C-terminal region. NtRHF1 is an ortholog of Arabidopsis SDIR1 (salt- and drought-induced RING finger 1) (73% identity to AtSDIR1). The recombinant NtRHF1 protein purified from E. coli exhibited an in vitro E3 ubiquitin ligase activity. Real-time quantitative PCR analysis indicated that the transcript levels of NtRHF1 were higher in aerial tissues and were markedly up-regulated by drought stress. Overexpression of NtRHF1 enhanced drought tolerance in transgenic tobacco plants while RNA silencing of NtRHF1 reduced drought tolerance. Further expression analysis by real-time PCR indicated that NtRHF1 participates in drought stress response possibly through transcriptional regulation of downstream stress-responsive genes NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in tobacco. Together, these results demonstrated that NtRHF1 plays a positive role in drought stress tolerance possibly through transcriptional regulation of several stress-responsive marker genes in tobacco. This study will facilitate to improve our understanding of molecular and functional properties of plant RING-H2 finger proteins and to provide genetic evidence on the involvement of the RING-H2 E3 ligase in drought stress response in Nicotiana tabacum plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.