Abstract

As we add rigid bars between points in the plane, at what point is there a giant (linear-sized) rigid component, which can be rotated and translated, but which has no internal flexibility? If the points are generic, this depends only on the combinatorics of the graph formed by the bars. We show that if this graph is an Erdos-Renyi random graph G(n,c/n), then there exists a sharp threshold for a giant rigid component to emerge. For c c_2, w.h.p. there is a giant rigid component. The constant c_2 \approx 3.588 is the threshold for 2-orientability, discovered independently by Fernholz and Ramachandran and Cain, Sanders, and Wormald in SODA'07. We also give quantitative bounds on the size of the giant rigid component when it emerges, proving that it spans a (1-o(1))-fraction of the vertices in the (3+2)-core. Informally, the (3+2)-core is maximal induced subgraph obtained by starting from the 3-core and then inductively adding vertices with 2 neighbors in the graph obtained so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.