Abstract

For a numerical semigroup, we encode the set of primitive elements that are larger than its Frobenius number and show how to produce in a fast way the corresponding sets for its children in the semigroup tree. This allows us to present an efficient algorithm for exploring the tree up to a given genus. The algorithm exploits the second nonzero element of a numerical semigroup and the particular pseudo-ordinary case in which this element is the conductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.