Abstract

The Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback is studied. Firstly, two auxiliary operators are introduced, and the Riesz basis property of their eigenvector systems is proved. This property is used to show that the generalized eigenvector system of a Timoshenko beam with some linear boundary feedback forms a Riesz basis in the corresponding state space. Finally, it is concluded that the closed loop system exhibits exponential stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.