Abstract

This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (ellipti-chyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem and prove the uniqueness of solutions for the boundary value problem. Afterwards, by using the method of successive iteration, the existence and estimates of solutions for the boundary value problem are verified. The above problem possesses the important applications to the Tricomi problem of mixed type equations of second order. In this article, the proof of Holder continuity of a singular double integer is very difficult and interesting as in this Section 4 below.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.