Abstract
We show that by deforming the Riemann-Hilbert (RH) formalism associated with certain linear PDEs and using the so-called dressing method, it is possible to derive in an algorithmic way nonlinear integrable versions of these equations. In the usual Dressing Method, one first postulates a matrix RH problem and then constructs dressing operators. Here we present an algorithmic construction of matrix Riemann-Hilbert (RH) problems appropriate for the dressing method as opposed to postulating them ad hoc. Furthermore, we introduce two mechanisms for the construction of the relevant dressing operators: The first uses operators with the same dispersive part, but with different decay at infinity, while the second uses pairs of operators corresponding to different Lax pairs of the same linear equation. As an application of our approach, we derive the NLS, derivative NLS, KdV, modified KdV and sine-Gordon equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.