Abstract
The rich landscape of enantiotropically related polymorphic forms and their solid-state phase transitions of dl-2-aminoheptanoic acid (dl-AHE) has been explored using a range of complementary characterization techniques, and is largely exemplary of the polymorphic behavior of linear aliphatic amino acids. As many as five new polymorphic forms were found, connected by four fully reversible solid-state phase transitions. Two low temperature forms were refined in a high Z′ crystal structure, which is a new phenomenon for linear aliphatic amino acids. All five structures consist of two-dimensional hydrogen-bonded bilayers interconnected by weak van der Waals interactions. The single-crystal-to-single-crystal phase transitions involve shifts of bilayers and/or conformational changes in the aliphatic chain. Compared to two similar phase transitions of the related amino acid dl-norleucine, the enthalpies of transition and NMR chemical shift differences are notably smaller in dl-aminoheptanoic acid. This is explained to be a result of both the nature of the conformational changes and the increased chain length, weakening the interactions between the bilayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.