Abstract

BackgroundPlastid ribosomal proteins (PRPs) play important roles in the translation of key proteins involved in chloroplast development and photosynthesis. PRPs have been widely studied in many plant species; however, few studies have investigated their roles in rice.ResultIn the present study, we used ethyl methane sulfonate mutagenesis and obtained a novel rice mutant called white green leaf 2 (wgl2). The wgl2 mutants exhibited an albino phenotype from germination through the three-leaf stage, and then gradually transitioned to green through the later developmental stages. Consistent with this albino phenotype, wgl2 mutants had abnormal chloroplasts and lower levels of photosynthetic pigments. Map-based cloning and DNA sequencing analyses of wgl2 revealed a single-nucleotide substitution (G to T) in the first exon of LOC_Os03g55930, which resulted in a substitution of glycine 92 to valine (G92 V). WGL2 encodes a conserved ribosomal protein, which localizes to the chloroplast. Complementation and targeted deletion experiments confirmed that the point mutation in WGL2 is responsible for the wgl2 mutant phenotype. WGL2 is preferentially expressed in the leaf, and mutating WGL2 led to obvious changes in the expression of genes related to chlorophyll biosynthesis, photosynthesis, chloroplast development, and ribosome development compared with wild-type.ConclusionsWGL2 encodes a conserved ribosomal protein, which localizes to the chloroplast. WGL2 is essential for early chloroplast development in rice. These results facilitate research that will further uncover the molecular mechanism of chloroplast development.

Highlights

  • Plastid ribosomal proteins (PRPs) play important roles in the translation of key proteins involved in chloroplast development and photosynthesis

  • WGL2 is essential for early chloroplast development in rice

  • To examine whether chloroplast development was affected in wgl2 albino seedlings, we analyzed the chloroplast ultrastructure of wild-type and wgl2 seedlings at the three-leaf stage with transmission electron microscopy

Read more

Summary

Introduction

Plastid ribosomal proteins (PRPs) play important roles in the translation of key proteins involved in chloroplast development and photosynthesis. The development of chloroplasts from proplastids involves plastid replication and activation of plastid DNA synthesis, chloroplast genetic system “build-up”, and synthesis and assembly of the photosynthetic apparatus. These steps are regulated by the coordinated expression of nuclear and plastid genes (Kusumi et al 2010; Kusumi et al 2011; Mullet 1993). Plastid ribosomal proteins (PRPs) play important roles in the build-up step of chloroplast differentiation.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call