Abstract

Four members of phosphoinositide-specific phospholipase C (PI-PLC) are predicted in rice genome. Although the involvement of OsPLC1 and OsPLC4 in the responses of rice to salt and drought stresses has been documented, the role of OsPLC3 in which, yet, is elusive. Here, we report that OsPLC3 was ubiquitously expressed in various tissues during the development of rice. The expression of YFP-tagged OsPLC3 was observed at the plasma membrane (PM), cytoplasm and nucleus of rice protoplasts, onion epidermal cells and tobacco leaves. The catalytic activity of OsPLC3 was measured using the thin-layer chromatography (TLC) method. The inhibition of OsPLC3 expression was detected in the treatments of NaCl and mannitol. Overexpression (OE) of OsPLC3 produced plants showing more sensitive to osmotic stresses when they were compared to the wild-type (HJ) and osplc3 mutants, the phenomena such as decreased plant fresh weight and increased water loss rate (WLR) were observed. Under the treatment of NaCl or mannitol, expressions of a subset osmotic stress-related genes were altered, in both OE and osplc3 mutant lines. In addition, the expressions and the enzyme activities of reactive oxygen species (ROS) scavengers were significantly decreased in OE lines, leading to over-accumulation of ROS together with less osmotic adjustment substances including proline, soluble sugars and soluble proteins in OE plants which caused the growth inhibition. Thus, our results suggested that, via modulating ROS homeostasis, OsPLC3 is involved in responses to the osmotic stress in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call