Abstract

Rice (Oryza sativa L.) is both a major crop species and the key model grass for molecular and physiological research. Mitochondria are important in rice, as in all crops, as the main source of ATP for cell maintenance and growth. However, the practical significance of understanding the function of mitochondria in rice is increased by the widespread farming practice of using hybrids to boost rice production. This relies on cytoplasmic male sterile (CMS) lines with abortive pollen caused by dysfunctional mitochondria. We provide an overview of what is known about the mitochondrial proteome of rice seedlings. To date, more than 320 proteins have been identified in purified rice mitochondria using mass spectrometry. The insights from this work include a broad understanding of the major subunits of mitochondrial respiratory complexes and TCA cycle enzymes, carbon and nitrogen metabolism enzymes as well as details of the supporting machinery for biogenesis and the subset of stress-responsive mitochondrial proteins. Many proteins with unknown functions have also been found in rice mitochondria. Proteomic analysis has also revealed the features of rice mitochondrial protein presequences required for mitochondrial targeting, as well as cleavage site features for processing of precursors after import. Changes in the abundance of rice mitochondrial proteins in response to different stresses, especially anoxia and light, are summarized. Future research on quantitative analysis of the rice mitochondrial proteomes at the spatial and developmental level, its response to environmental stresses and recent advances in understanding of the basis of rice CMS systems are highlighted.

Highlights

  • Rice is the one of the key model plants for research and the major food crop in developing countries

  • Dramatic increases in rice production have occurred in the past few decades through large scale hybrid rice cultivation using cytoplasmic male sterile (CMS) lines with abortive pollen caused by dysfunctional mitochondria (Eckardt, 2006; Wang et al, 2006)

  • We discuss the effects of the environment, in particular anoxia and light, on rice mitochondrial proteome composition and how the proteome differs in CMS lines

Read more

Summary

Introduction

Rice is the one of the key model plants for research and the major food crop in developing countries. Comparison of these two studies revealed less than 20% overlap in the two datasets of highly abundant proteins, highlighting the importance of optimized methods for mitochondria purification prior to proteomic analysis. The combination of traditional differential and gradient centrifugation with this new FFE separation technique has allowed isolation of highly purified rice mitochondria for proteomic analysis (Huang et al, 2009a).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.