Abstract

Abscisic acid (ABA) regulates many aspects of plant growth and development and the responses to abiotic stresses. Arabidopsis aldehyde oxidase 3 (AAO3) catalyzes the final step of ABA biosynthesis. We cloned and functionally characterized a novel aldehyde oxidase gene, OsAO3, the rice homolog of AAO3. OsAO3 was expressed in germinated seeds, roots, leaves, and floral organs, particularly in vascular tissues and guard cells, and its expression was significantly induced by exogenous ABA and mannitol. Mutation and overexpression of OsAO3 decreased and increased ABA levels, respectively, in seedling shoots and roots under both normal and drought stress conditions. The osao3 mutant exhibited earlier seed germination, increased seedling growth, and decreased drought tolerance compared to the wild-type, OsAO3-overexpressing lines exhibited the opposite phenotype. Mutation and overexpression of OsAO3 increased and decreased grain yield, respectively, by affecting panicle number per plant, spikelet number per panicle, and spikelet fertility. Thus, OsAO3 may participate in ABA biosynthesis, and is essential for regulation of seed germination, seedling growth, grain yield, and drought tolerance in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call