Abstract

We generalize most of the known Ricci flow invariant non-negative curvature conditions to less restrictive negative bounds that remain sufficiently controlled for a short time. As an illustration of the contents of the paper, we prove that metrics whose curvature operator has eigenvalues greater than $$-\,1$$ can be evolved by the Ricci flow for some uniform time such that the eigenvalues of the curvature operator remain greater than $$-\,C$$ . Here the time of existence and the constant C only depend on the dimension and the degree of non-collapsedness. We obtain similar generalizations for other invariant curvature conditions, including positive biholomorphic curvature in the Kahler case. We also get a local version of the main theorem. As an application of our almost preservation results we deduce a variety of gap and smoothing results of independent interest, including a classification for non-collapsed manifolds with almost non-negative curvature operator and a smoothing result for singular spaces coming from sequences of manifolds with lower curvature bounds. We also obtain a short-time existence result for the Ricci flow on open manifolds with almost non-negative curvature (without requiring upper curvature bounds).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.