Abstract

The omega sequence at the 5'-terminus of tobacco mosaic virus (TMV) RNA acts as a translational enhancer. The differential in omega-associated translational enhancement between the in vitro translation system derived from wheat germ (WG) and that from rabbit reticulocytes (MDL) was exploited to identify that lysate component which was responsible for a lysate's characteristic response to omega. Using fractionated MDL and WG lysates, which were reconstituted in various combinations, the high salt-washed ribosomal fraction was determined to be the responsive element in a lysate. Analysis of omega's ability to enhance translation was greatest at low mRNA and high ribosomal concentrations and to occur in the early phase of an in vitro translation assay. Translation of omega-containing CAT mRNA was more sensitive to the presence of micrococcal nuclease than CAT mRNA without an omega. In substitution experiments, WG ribosomes functioned at much reduced efficiency in MDL as did MDL ribosomes in WG lysate. The initiation factor-containing fraction of one system could not, as a whole, functionally replace that of the other and actually acted to inhibit translation in the heterologous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call