Abstract

Functional interactions between protein kinase A (PKA) and epidermal growth factor receptor (EGF-R) signalling pathways have been suggested. Unlike the type II isoform of PKA (PKAII), the type I (PKAI) and/or its regulatory subunit RIalpha are generally overexpressed in cancer cells and are induced following transforming growth factor alpha (TGF alpha)/EGF-R-dependent transformation. Downregulation of RIalpha/PKAI inhibits TGF alpha expression and EGF-R-dependent signalling. We have previously shown that addition of EGF to quiescent human normal epithelial MCF-10A cells determines PKAI expression and cell membrane translocation before cells enter S phase, while PKAI inhibition prevents S phase entry. Constitutive overexpression of PKAI confers the ability to grow in serum free medium, bypassing EGF requirement. Here we demonstrate a direct interaction of PKAI, but not of PKAII, with the activated EGF-R, that occurs within 5 min following EGF treatment of MCF-10A cells. Moreover, induction of mitogen-activated protein kinase (MAPK) activity following EGF-R activation is mimicked by PKAI overexpression and inhibited by downregulators of PKAI. Finally, the PKAI-EGF-R association occurs through the binding of RIalpha to the SH3 domain(s) of Grb2 adaptor protein, thus allowing the recruitment of the PKAI holoenzyme to the activated EGF-R. This is the first demonstration of a direct interaction of PKAI with the activated EGF-R macromolecular signalling complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.