Abstract

Omnidirectional videos are usually mapped to planar domain for encoding with off-the-shelf video compression standards. However, existing work typically neglects the effect of the sphere-to-plane mapping. In this paper, we show that by carefully designing the mapping, we can improve the visual quality, stability and compression efficiency of encoding omnidirectional videos. Here we propose a novel mapping scheme, known as the rhombic dodecahedron map (RD map) to represent data over the spherical domain. By using a family of skew great circles as the subdivision kernel, the RD map not only produces a sampling pattern with very low discrepancy, it can also support a highly efficient data indexing mechanism over the spherical domain. Since the proposed map is quad-based, geodesic-aligned, and of very low area and shape distortion, we can reliably apply 2-D wavelet-based and DCT-based encoding methods that are originally designated to planar perspective videos. At the end, we perform a series of analysis and experiments to investigate and verify the effectiveness of the proposed method; with its ultra-fast data indexing capability, we show that we can playback omnidirectional videos with very high frame rates on conventional PCs with GPU support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.