Abstract

To gain insight into the mitochondrial genome structure and gene content of a putatively ancestral group of eukaryotes, the cryptophytes, we sequenced the complete mitochondrial DNA of Rhodomonas salina. The 48 063 bp circular-mapping molecule codes for 2 rRNAs, 27 tRNAs and 40 proteins including 23 components of oxidative phosphorylation, 15 ribosomal proteins and two subunits of tat translocase. One potential protein (ORF161) is without assigned function. Only two introns occur in the genome; both are present within cox1 belong to group II and contain RT open reading frames. Primitive genome features include bacteria-like rRNAs and tRNAs, ribosomal protein genes organized in large clusters resembling bacterial operons and the presence of the otherwise rare genes such as rps1 and tatA. The highly compact gene organization contrasts with the presence of a 4.7 kb long, repeat-containing intergenic region. Repeat motifs ∼40–700 bp long occur up to 31 times, forming a complex repeat structure. Tandem repeats are the major arrangement but the region also includes a large, ∼3 kb, inverted repeat and several potentially stable ∼40–80 bp long hairpin structures. We provide evidence that the large repeat region is involved in replication and transcription initiation, predict a promoter motif that occurs in three locations and discuss two likely scenarios of how this highly structured repeat region might have evolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call