Abstract

Morphogenesis allows an organism to develop its final body shape. In Caenorhabditis elegans, a smooth muscle-like contraction of an actin/myosin network in the epidermis mediates the elongation of the worm embryo from a ball of cells into a long, thin worm. This process is controlled by two redundant pathways, one involving the small GTPase RHO-1 and its downstream effectors LET-502/Rho-binding kinase and MEL-11/myosin phosphatase, and another involving PAK-1/p21 activated kinase and FEM-2/PP2c phosphatase. Contraction occurs primarily in the lateral epidermal cells during elongation while the dorsal and ventral epidermal cells have a more passive role, and localized activity of a Rho GEF (guanine exchange factor) could contribute to this asymmetry. We found that loss of the C. elegans Rho GEF encoded by rhgf-2 results in arrest during early elongation. Genetically, rhgf-2 acts as an activator of let-502/Rho-binding kinase, in parallel to fem-2/PP2c phosphatase. Although expressed throughout the embryo, lateral cell-specific RHGF-2 expression can mediate elongation. The Rho GTPase activating protein (GAP) RGA-2 is known to inhibit contraction in the dorsal and ventral epidermis. Although rhgf-2 and rga-2 are individually lethal, the double mutant is viable with elongation still occurring in a let-502 dependent fashion. This indicates that LET-502/Rho-binding kinase has activity independent of the GEF and GAP. Finally, maternal LET-502 and MEL-11 are known to regulate the rate of cleavage furrow ingression in the early embryo and we show that maternal RHGF-2 also influences cleavage but RGA-2 does not. Thus while the LET-502/MEL-11 pathway is employed multiple times during embryogenesis, regulation by GEFs and GAPs differs at different points of the life cycle and fine tunes contractile function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call