Abstract

The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) observes solar hard X-rays and gamma-rays from 3 keV to 17 MeV with spatial resolution as high as 2.3 arc sec. Instead of focusing optics, imaging is based on nine rotating modulation collimators that time-modulate the incident flux as the spacecraft rotates. Starting from the arrival time of individual photons, ground-based software then uses the modulated signals to reconstruct images of the source. The purpose of this paper is to convey both an intuitive feel and the mathematical basis for this imaging process. Following a review of the relevant hardware, the imaging principles and the basic back-projection method are described, along with their relation to Fourier transforms. Several specific algorithms (Clean, MEM, Pixons and Forward-Fitting) applicable to RHESSI imaging are briefly described. The characteristic strengths and weaknesses of this type of imaging are summarized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.