Abstract

The main goal of the work was to use rheological methods for assessing the properties of a composition based on polyether ether ketone (PEEK) to determine the concentration limits of the polymer in the composition and select the optimal content of this composition for powder molding. The rheological properties of highly filled suspensions based on PEEK and paraffin, as well as in paraffin-polyethylene mixtures at various component ratios, were studied. These materials are designed for powder injection molding and 3D printing. Suspensions with a PEEK powder content above 50% are not capable of flow and, with increasing pressure, slide along the surface of the channel. For compositions with a higher content (60 and 70 vol.%) PEEK, independence of the storage modulus from frequency is observed, which is typical for solids and confirms the assignment of such suspensions to elastic-plastic media. The introduction of high-density polyethylene into the composition helps improve the technological properties of suspensions, expanding the range of fluidity, although it leads to an increase in viscosity. In suspensions with a mixed composition of the liquid phase, with increasing temperature, a decrease in the storage modulus is observed at 120 °C and, on the contrary, an increase at 180 °C. The latter may be a consequence of the evaporation of paraffin and the softening of PEEK due to the approach to the glass transition temperature of the polymer. Suspensions with 40% PEEK content have an optimal set of rheological properties for powder injection molding. A 3D printing filament was also obtained from a composition with 40% PEEK, which had good technological properties for FDM 3D printing. Products of satisfactory quality from suspensions with 50% PEEK can be produced by powder injection molding, but not by 3D printing. The selected compositions were used to obtain real PEEK products for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.