Abstract

Stability control of particulate dispersions is critical to a wide range of industrial processes. In the UK nuclear industry, significant volumes of waste materials arising from the corrosion products of Magnox fuel rods currently require treatment and storage. The majority of this waste is present as aqueous dispersions of oxide particulates. Treatment of these dispersions will require a variety of unit operations including mobilisation, transport and solid-liquid separation. Typically these processes must operate across a narrow optimal range of pH and the dispersions are, almost without exception, found in complex electrolyte conditions of high overall concentration. Knowledge of the behaviour of oxides in various electrolyte conditions and over a large pH range is essential for the efficient design and control of any waste processing approach. The transport properties of particle dispersions are characterised by the rheological properties. It is well known that particle dispersion rheology is strongly influenced by particle-particle interaction forces, and that particle-particle interactions are strongly influenced by adsorbed ions on the particle surfaces. Here we correlate measurements of the shear yield stress and the particle zeta potentials to provide insight as to the role of ions in moderating particle interactions. The zeta potential of model TiO2 suspensions were determined (Colloidal Dynamics ZetaProbe) over a range of pH for a series of alkali metal halides and quaternary ammonium halides at a range of solution concentrations (0.001M–1M). The results show some surprising co-ion effects at high electrolyte concentrations (>0.5M) and indicate that even ions generally considered to be indifferent induce a shift in iso-electric point (i.e.p.) which is inferred as being due to specific adsorption of ions. The shear yield stress values of concentrated titania dispersions were measured using a Bohlin C-VOR stress controlled rheometer. The shear yield stress of a material is defined as the minimum applied shear stress required to induce flow. The yield stress vs. pH curves obtained reflected the shifts in i.e.p. seen in the zeta potential results. Interestingly, specific ion adsorption results in an unexplained increase in the value of the yield stress over that expected for simple systems with no such interfacial ion adsorption. Possible reasons for this effect such as ion-ion correlation effects are discussed. The importance of this increased attraction for the mobilisation of settled solids in an aqueous environment and especially the likely effects on the treatment of Magnox fuel waste materials is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.