Abstract

This paper is concerned with the rheology of algae suspensions relevant to algae biofuel processing for a range of concentrations up to 15 vol. % using mostly a piezoaxial vibrator (PAV) rheometer as a method of measuring rheological properties. Linear viscoelastic (LVE) measurements of a Scenedesmus obliquus [culture collection of algae and protozoa (CCAP) 276/7] living algae strain were obtained and a curve for complex viscosity (η*) as a function of concentration/volume fraction derived. The PAV complex viscosity data increased exponentially with cell concentration and elasticity (G′) developed in a similar way with increasing concentration. The results indicated the presence of interaction between algae cells at all measured concentrations. For concentrations above ∼5 vol. %, steady shear data obtained using a Couette geometry showed non-Newtonian “shear-thinning” behavior and at higher concentrations there was a divergence from the Cox–Merz rule. A difference in the LVE rheological measurements was found for cells that were either alive or dead indicating that cell motility and significant interparticle contact and interactions influenced levels of viscoelasticity. The results are of potential scientific relevance and also useful in relation to the design of algae bioprocessing for the production of biofuels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.