Abstract

Bulk metallic glasses (BMGs) show limited plasticity at room temperature. However, BMGs usually exhibit superplasticity and high plastic forming ability in their supercooled liquid region (SLR). The rheological behavior of BMGs in SLR is vitally important to their thermoplastic forming process. In contrast to the ductile BMGs, thermoplastic deformation behavior of brittle BMGs is rarely reported. In present work, the rheological behavior of two brittle BMGs with high glass forming ability Cu44.25Ag14.75Zr36Ti5 and Ti32.8Zr30.2Cu9Ni5.3Be22.7 was investigated on Gleeble3500. The two BMGs can deform homogeneously depending on the temperature and strain rate. According to the high value of m (strain rate sensitivity index), which is the most important mechanical characteristic of a superplastic material, the two BMGs show superplasticity in their SLR with m ≥ 0.3. Based on the free volume model, their activation volumes are calculated as 0.263∼0.486 nm3 and 1.261∼1.650 nm3, indicating the minimum displacement clusters with average 26∼48 and 91∼127 atoms, for Cu44.25Ag14.75Zr36Ti5 and Ti32.8Zr30.2Cu9Ni5.3Be22.7, respectively. Thus, the two investigated brittle BMGs can be thermoplastic processed in the SLR and the deformation maps are given. BMG Cu44.25Ag14.75Zr36Ti5 shows better machinable property than Ti32.8Zr30.2Cu9Ni5.3Be22.7. Compared to the ductile BMGs, no Newtonian flow is found for the two investigated brittle BMGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.