Abstract

We present the Renormalization Group improvement of the Twin Higgs effective potential at cubic order in logarithmic accuracy. We first introduce a model-independent low-energy effective Lagrangian that captures both the pseudo-Nambu-Goldstone boson nature of the Higgs field and the twin light degrees of freedom charged under a copy of the Standard Model. We then apply the background field method to systematically re-sum all the one loop diagrams contributing to the potential. We show how this technique can be efficient to implicitly renormalize the higher-dimensional operators in the twin sector without classifying all of them. A prediction for the Higgs mass in the Twin Higgs model is derived and found to be of the order of $M_H \sim 120 ~\text{GeV}$ with an ultraviolet cut-off $m_*\sim 10-20 ~\text{TeV}$. Irrespective of any possible ultraviolet completion of the low-energy Lagrangian, the infrared degrees of freedom alone are therefore enough to account for the observed value of the Higgs mass through running effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.