Abstract
The syntactic theories of control and state are conservative extensions of the λ υ-calculus for equational reasoning about imperative programming facilities in higher-order languages. Unlike the simple λ υ-calculus, the extended theories are mixtures of equivalence relations and compatible congruence relations on the term language, which significantly complicates the reasoning process. In this paper we develop fully compatible equational theories of the same imperative higher-order programming languages. The new theories subsume the original calculi of control and state and satisfy the usual Church–Rosser and Standardization Theorems. With the new calculi, equational reasoning about imperative programs becomes as simple as reasoning about functional programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.