Abstract
In this paper, a novel thermodynamic cycle is proposed, termed the reversed chemical engine cycle. In the cycle, a net input of work is used to transfer mass from a low chemical potential reservoir to a high chemical potential reservoir. The cycle has two mass exchangers, a pump and a turbine. The only irreversibility considered in the model is finite-rate mass transfer. Similar to the reversed Carnot cycle, expressions for the performance ratio (analogous to the coefficient of performance) are obtained under the condition of minimized power requirement for the endoreversible and, in turn, the reversible case. The reversed mass engine cycle is shown to be a special case of the reversed chemical engine. An equipartitioned hybrid forward osmosis reverse osmosis (FO–RO) system is considered as an example of the cycle.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.