Abstract

Abstract ${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ where $\mathsf {TAC}$ is the tree antichain theorem introduced by Conidis [6]. We show that ${\mathsf {CAC\ for\ trees}}$ is computationally very weak, in that it admits probabilistic solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call