Abstract

Every function over the natural numbers has an infinite subdomain on which the function is non-decreasing. Motivated by a question of Dzhafarov and Schweber, we study the reverse mathematics of variants of this statement. It turns out that this statement restricted to computably bounded functions is computationally weak and does not imply the existence of the halting set. On the other hand, we prove that it is not a consequence of Ramsey’s theorem for pairs. This statement can therefore be seen as an arguably natural principle between the arithmetic comprehension axiom and stable Ramsey’s theorem for pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.