Abstract

The reusage of water and steam utilities plays a key role in the mitigation of decarbonising and climate change, including reduced fossil-fuel energy consumption and reducing the dependence on natural gas. The water condensates can be used for utility and heat-recovery systems by an integrated fork technique, achieving economic benefits and a complete circular economy, presented in two steps. The main novelty of this fork technique includes the determination of a regulated heat flow rate for the integration between the dryer and evaporator, which enables an evaporation of the same water mass flow as by the existing evaporating system, which is performed in the first step. The main significance of this technique presents the manner of a fork system as a superstructure for waste condensates’ collection separately and combinedly, and sustainable reusage's alternatives of the condensates, such as steam or electricity cogeneration, presented in the second step.This technique is carried out in two steps, including real-simulated results using an Aspen Plus® simulator. This approach is illustrated using an existing sugar production, which is selected as the waste mass and energy reusage from the evaporator and dryer for low-pressure steam production, generating a possible increase profit of 1.9 MEUR/a. The saving of the heat flow rate after the integrated dryer with evaporator should be 15,816 kW, or 73 %, presenting as a percentage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call