Abstract
Aromatic residues appeared relatively late in the evolution of protein sequences to stabilize the globular proteins' folding core and are less in the intrinsically disordered regions (IDRs). Recent advances in protein liquid-liquid phase separation (LLPS) studies have also shown that aromatic residues in IDRs often act as "stickers" to promote multivalent interactions in forming higher-order oligomers. To study how general these structure-promoting residues are in IDRs, we compared levels of sequence disorder in RNA binding proteins (RBPs), which are often found to undergo LLPS, and the human proteome. We found that aromatic residues appear more frequently than expected in the IDRs of RBPs and, through multiple sequence alignment analysis, those aromatic residues are often conserved among chordates. Using TDP-43, FUS, and some other well-studied LLPS proteins as examples, the conserved aromatic residues are important to their LLPS-related functions. These analyses suggest that aromatic residues may have contributed twice to evolution: stabilizing structured proteins and assembling biomolecular condensates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Protein science : a publication of the Protein Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.